Implementing Innovative Credit Scoring (ICS) for Credit Risk Assessment and Loan Origination
DOI:
https://doi.org/10.61459/ijfs.v3i1.36Keywords:
Innovative Credit Scoring, Credit Risk Assessment, Non-Traditional Data, Process Efficiency, Credit Access InclusivenessAbstract
This research aims to analyze the implementation of Innovative Credit Scoring (ICS) in the financial industry through case studies of banks and fintech startups. This research uses a qualitative approach with case studies as the primary research design. The results show that ICS can improve process efficiency, scoring accuracy, and inclusiveness of credit access. ICS has significant practical implications, including improved efficiency, more accurate risk assessment, and more inclusive access to credit. Recommendations include cooperation with technology companies, regulatory oversight, attention to ethical aspects and algorithm bias, and developing a validation framework.
Downloads
References
Amalina, F., Hashem, I. A. T., Azizul, Z. H., Fong, A. T., Firdaus, A., Imran, M., & Anuar, N. B. (2020). Blending Big Data Analytics: Review on Challenges and a Recent Study. IEEE Access, 8, 3629–3645. https://api.semanticscholar.org/CorpusID:196171799
Ashofteh, A., & Bravo, J. M. (2021). A conservative approach for online credit scoring. Expert Syst. Appl., 176, 114835. https://api.semanticscholar.org/CorpusID:233670454
Basha, S. M., & Rajput, D. S. (2019). Survey on Evaluating the Performance of Machine Learning Algorithms: Past Contributions and Future Roadmap. Deep Learning and Parallel Computing Environment for Bioengineering Systems. https://api.semanticscholar.org/CorpusID:201128172
Battle, L., & Scheidegger, C. E. (2020). A Structured Review of Data Management Technology for Interactive Visualization and Analysis. IEEE Transactions on Visualization and Computer Graphics, 27, 1128–1138. https://api.semanticscholar.org/CorpusID:221725386
Chopra, S. (2021). Current Regulatory Challenges in Consumer Credit Scoring Using Alternative Data-Driven Methodologies. https://api.semanticscholar.org/CorpusID:247517327
Danisman, G. O., & Demirel, P. (2019). Bank risk-taking in developed countries: The influence of market power and bank regulations. Journal of International Financial Markets, Institutions and Money. https://api.semanticscholar.org/CorpusID:158055076
Datoo, A. (2018). Data in the post-GDPR world. Computer Fraud & Security. https://api.semanticscholar.org/CorpusID:69338557
de Paula, D. A. V., Artes, R., Ayres, F. M., & Minardi, A. M. A. F. (2019). Estimating credit and profit scoring of a Brazilian credit union with logistic regression and machine-learning techniques. RAUSP Management Journal. https://api.semanticscholar.org/CorpusID:132431396
Donovan, J., Jennings, J. N., Koharki, K., & Lee, J. A. (2020). Measuring credit risk using qualitative disclosure. Review of Accounting Studies, 26, 815–863. https://api.semanticscholar.org/CorpusID:225770171
Drus, Z., & Khalid, H. (2019). Sentiment Analysis in Social Media and Its Application: Systematic Literature Review. Procedia Computer Science. https://api.semanticscholar.org/CorpusID:213629215
Edla, D. R., Tripathi, D., Cheruku, R., & Kuppili, V. (2018). An Efficient Multi-layer Ensemble Framework with BPSOGSA-Based Feature Selection for Credit Scoring Data Analysis. Arabian Journal for Science and Engineering, 43, 6909–6928. https://api.semanticscholar.org/CorpusID:59533592
Eslami, M. (2021). Revisiting Transparency and Fairness in Algorithmic Systems Through the Lens of Public Education and Engagement. Proceedings of the Eighth ACM Conference on Learning @ Scale. https://api.semanticscholar.org/CorpusID:235354315
Gambetta, N., Azcárate-Llanes, F., Sierra‐García, L., & García-Benau, M. A. (2021). Financial Institutions’ Risk Profile and Contribution to the Sustainable Development Goals. Sustainability. https://api.semanticscholar.org/CorpusID:237825228
Giudici, P., Hadji-Misheva, B., & Spelta, A. (2020). Network based credit risk models. Quality Engineering, 32, 199–211. https://api.semanticscholar.org/CorpusID:209765687
Gonçalves-Ferreira, D. N., Sousa, M., Bacelar-Silva, G. M., Frade, S., Antunes, L. F. C., Beale, T. W., & Cruz-Correia, R. J. (2019). OpenEHR and General Data Protection Regulation: Evaluation of Principles and Requirements. JMIR Medical Informatics, 7. https://api.semanticscholar.org/CorpusID:85501886
Guo, S., He, H., & Huang, X. (2019). A Multi-Stage Self-Adaptive Classifier Ensemble Model With Application in Credit Scoring. IEEE Access, 7, 78549–78559. https://api.semanticscholar.org/CorpusID:195740176
Hacker, P. (2018). Teaching fairness to artificial intelligence: Existing and novel strategies against algorithmic discrimination under EU law. Common Market Law Review. https://api.semanticscholar.org/CorpusID:197758398
Kang, Y., Jia, N., Cui, R., & Deng, J. (2021). A graph-based semi-supervised reject inference framework considering imbalanced data distribution for consumer credit scoring. Appl. Soft Comput., 105, 107259. https://api.semanticscholar.org/CorpusID:233858087
Katadata. (2022). Open finance deep dive report: Tantangan dan potensi open finance di Indonesia. Katadata Insight Center. https://katadata.co.id/
Kumar, M. R., & Gunjan, V. K. (2020). Review of Machine Learning models for Credit Scoring Analysis. https://api.semanticscholar.org/CorpusID:226121187
Liberati, C., & Camillo, F. (2018). Personal values and credit scoring: new insights in the financial prediction. Journal of the Operational Research Society, 69, 1994–2005. https://api.semanticscholar.org/CorpusID:58021980
Luo, C. (2019). A comprehensive decision support approach for credit scoring. Ind. Manag. Data Syst., 120, 280–290. https://api.semanticscholar.org/CorpusID:208844202
Mahbobi, M., Kimiagari, S., & Vasudevan, M. (2021). Credit risk classification: an integrated predictive accuracy algorithm using artificial and deep neural networks. Annals of Operations Research. https://api.semanticscholar.org/CorpusID:237760427
Melnyk, K., & Borysova, N. (2019). Improving The Quality Of Credit Activity By Using Scoring Model. Radio Electronics, Computer Science, Control. https://api.semanticscholar.org/CorpusID:204691180
Njuguna, R. G., & Sowon, K. (2021). Poster: A Scoping Review of Alternative Credit Scoring Literature. ACM SIGCAS Conference on Computing and Sustainable Societies. https://api.semanticscholar.org/CorpusID:237609522
Novoselova, N. N., Romanov, V. A., & KHubulova, V. (2022). Theoretical Aspects Of Improving Credit Scoring Modeling In Activities Of Commercial Banking Institutions. Bulletin USPTU Science Education Economy Series Economy. https://api.semanticscholar.org/CorpusID:257319684
Otoritas Jasa Keuangan. (2023). Statistik Lembaga Pembiayaan [Dataset]. https://ojk.go.id/id/kanal/iknb/data-dan-statistik/lembaga-pembiayaan/default.aspx
Óskarsdóttir, M., Bravo, C., Sarraute, C., Vanthienen, J., & Baesens, B. (2020). The value of big data for credit scoring: Enhancing financial inclusion using mobile phone data and social network analytics. Appl. Soft Comput., 74, 26–39. https://api.semanticscholar.org/CorpusID:57374443
Paltrinieri, N., Comfort, L. K., & Reniers, G. L. L. (2019). Learning about risk: Machine learning for risk assessment. Safety Science. https://api.semanticscholar.org/CorpusID:195382727
Pang, S., Hou, X., & Xia, L. (2021). Borrowers’ credit quality scoring model and applications, with default discriminant analysis based on the extreme learning machine. Technological Forecasting and Social Change, 165, 120462. https://api.semanticscholar.org/CorpusID:233523569
Romanyuk, K. (2021). The Challenges of Using Big Data in the Consumer Credit Sector. Sai. https://api.semanticscholar.org/CorpusID:237967040
Römer, U., & Musshoff, O. (2018). Can agricultural credit scoring for microfinance institutions be implemented and improved by weather data. Agricultural Finance Review, 78, 83–97. https://api.semanticscholar.org/CorpusID:51995581
Seymour, W. (2018). Detecting Bias : Does an Algorithm Have to Be Transparent in Order to Be Fair ? https://api.semanticscholar.org/CorpusID:53313636
Shen, F., Zhao, X., Li, Z., Li, K., & Meng, Z. (2019). A novel ensemble classification model based on neural networks and a classifier optimisation technique for imbalanced credit risk evaluation. Physica A: Statistical Mechanics and Its Applications. https://api.semanticscholar.org/CorpusID:145859272
Sousa, G. (2022). Natural Language Processing and its applications in e-business. Cadernos de Investigação Do Mestrado Em Negócio Eletrónico CIMNE. https://api.semanticscholar.org/CorpusID:250706393
Tao, Z., Zhang, W., Xu, W., & Hao, H. (2018). Multiple instance learning for credit risk assessment with transaction data. Knowl. Based Syst., 161, 65–77. https://api.semanticscholar.org/CorpusID:53237188
Tigges, M., Mestwerdt, S., Tschirner, S., & Mauer, R. (2024). Who gets the money? A qualitative analysis of fintech lending and credit scoring through the adoption of AI and alternative data. Technological Forecasting and Social Change, 205, 123491. https://doi.org/https://doi.org/10.1016/j.techfore.2024.123491
Trivedi, S. K. (2020). A study on credit scoring modeling with different feature selection and machine learning approaches. Technology in Society, 63, 101413. https://api.semanticscholar.org/CorpusID:224860704
Wijaya, T. (2023). The Rise of Innovative Credit Scoring System in Indonesia: Assessing Risks and Policy Challenges. 57. https://repository.cips-indonesia.org/media/publications/560780-the-rise-of-innovative-credit-scoring-sy-0f4556b9.pdf
Yu, X., Yang, Q., Wang, R., Fang, R., & Deng, M. (2020). Data Cleaning for Personal Credit Scoring by Utilizing Social Media Data: An Empirical Study. IEEE Intelligent Systems, 35, 7–15. https://api.semanticscholar.org/CorpusID:213938593
Zhang, H., He, H., & Zhang, W. (2018). Classifier selection and clustering with fuzzy assignment in ensemble model for credit scoring. Neurocomputing, 316, 210–221. https://api.semanticscholar.org/CorpusID:52288859
Zhang, R., & Qiu, Z. (2020). Optimizing hyper-parameters of neural networks with swarm intelligence: A novel framework for credit scoring. PLoS ONE, 15. https://api.semanticscholar.org/CorpusID:219399248
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 The International Journal of Financial Systems

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
IJFS article's license is CC-BY-NC. Authors grant the journal/publisher publishing rights with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.